\(M=\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(z^2-z+\frac{1}{4}\right)-\frac{5}{4}\)
\(M=\left(x-y\right)^2+\left(2x-1\right)+\left(z-\frac{1}{2}\right)^2-\frac{5}{4}>=-\frac{5}{4}\)
=>M min\(=-\frac{5}{4}\)
<=>x=y=z=1/2
\(M=\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(z^2-z+\frac{1}{4}\right)-\frac{5}{4}\)
\(M=\left(x-y\right)^2+\left(2x-1\right)+\left(z-\frac{1}{2}\right)^2-\frac{5}{4}>=-\frac{5}{4}\)
=>M min\(=-\frac{5}{4}\)
<=>x=y=z=1/2
tìm gtnn \(5x^2+y^2+z^2-4x-2xy-z-1\)
mọi người giúp mk vs ạ
câu 1: tìm GTNN của M= x^2-5x+y^2+xy-4y+2014
câu 2: cho x,y,z>0 và x+y+z=1
tìm GTNN của S= 1/x +4/y +y/z
MỌI NGƯỜI GIÚP MK VS Ạ , mk cần rất gấp . cảm ơn các bạn nha
câu 1, tìm GTNN của M=x^2-5x+y^2-xy-5x-4y+2014
câu 2, cho x,y,z>0 và x+y+z=1. Tìm GTNN của S=1/x +4/y + y/z
câu 3. cho pt x^2-5x+m-2=0
tìm m để pt có 2 nghiệm dương phân biệt thõa mãn \(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
1. Cho x,y,z >0 t/m: \(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}=2\)
Tìm max (xyz)
2. Cho \(2x^2+y^2-2xy=1\)
a) CM: |x| ≤ 1
b) Tìm max \(P=4x^4+4y^4-2x^2y^2\)
cho các số thực x,y,z thỏa mãn 0<=x,y,z<=3
tìm gtnn của A= \(\sqrt{x^2+y^2-2xy}+\sqrt{Y^2-z\left(z-2y\right)}+\sqrt{x^2+z\left(z-2x\right)}\)
\(\)Tìm GTNN √(4x+2√x+1)+√(4y+2√y+1)+√(4z+2√z+1) với x+y+z=12;x,y,z>0
tìm GTNN
P=5x2+2y2-2xy-4x+2y+2013
Q=5x2+2y2-2xy-4x+2y+3
tìm GTNN
P=5x2+2y2-2xy-4x+2y+2013
Q=5x2+2y2-2xy-4x+2y+3
cho x,y,z là các số thực dương thỏa mãn : \(4x^2+4y^2+17xy+5x+5y\ge1\)Tìm GTNN của \(P=17x^2+17y^2+16xy\)