1. TÌm GTNN:
a, M=\(\frac{x^4+1}{\left(x^2+1\right)^2}\)
b, N=\(\frac{x^2}{-4y^2+20xy-29x^2}\)
2. Tìm GTNN và GTLN của biểu thức:
a,A=\(\frac{2x^2-2x+9}{x^2+2x+5}\)
b, B=\(\frac{4x^3}{x^2+1}\)
c, C=\(\frac{2\left(x^2+x+1\right)}{x^2+1}\)
d, D=\(\frac{x^2+xy+y^2}{x^2+y^2}\)với x khác 0
cho B = \(\frac{4}{x^2-2x+1}-\left(\frac{x}{x^2-1}-\frac{1}{x^3-x}\right):\frac{x^2-2x+1}{x^3+x}\)
a) Tìm ĐKXĐ và rút gọn B
b) tính giá trị B khi /x-1/ = 2
c) tìm x để B = -1
d) so sánh B với -2
e) GTNN của B
Cho P = \(\frac{x^4-x}{x^2+x+1}-\frac{2x^2+x}{x}+\frac{2\left(x^2-1\right)}{x-1}\)
a) Rút gọn P
b) Tìm GTNN của P
c) Tìm các giá trị dương của x để Q= \(\frac{2x}{P}\) nhận giá trị là số nguyên
Cho P=\(\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
a, Rút gọn P
b, Tìm x để P<1
c, Tìm GTNN của P khi x>1
Bài 1: Cho biểu thức P=\(\frac{x^4-x}{x^2+x+1}-\frac{2x^2+x}{x}+\frac{2\left(x^2-1\right)}{x-1}\)
a) Rút gọn P.
b) Tìm GTNN của P.
c) Tìm các giá trị dương của x để biểu thức Q=\(\frac{2x}{P}\) nhận giá trị là số nguyên.
Cho P= \(\frac{x^2}{x^2-2x+1}\div\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)ĐKXĐ:x\ne0;x\ne1\)
a, Rút gọn P
b, Tìm x để P<1c, Tìm GTNN của P khi x>1
a) tìm GTLN của đa thức\(\frac{1}{2x^2-5x+5}\)\(\)
b) tìm GTNN của đa thức \(\frac{x^2-2x+2009}{x^2}\)
cho B=\(\frac{x^2-x}{x^2-2x+1}\):(\(\frac{x-1}{x+1}\)-\(\frac{1}{1-x}\)+\(\frac{2-x^2}{x^2-x}\))
a)Tìm điều kiện xác định và rút gọn
b)Tìm GTNN của B khi x>1
1. Tìm GTNN của A= \(\frac{x^2-2x+2018}{x^2}\)
2. Tìm GTLN của B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
3. Tìm GTLN của M= \(\frac{3x^2+14}{x^2+4}\)
4. Cho x+y=2. Tìm GTNN của A= \(x^3+y^3+2xy\)