Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Anh

Tìm giá trị nhỏ nhất:

A)2x^2-2x+1

B)x^2-x+5

C)3x^2-4x+5

D)2x^2+3x+5

Xyz OLM
23 tháng 7 2021 lúc 10:50

Đặt A = \(2x^2-2x+1=2\left(x^2-x+\frac{1}{2}\right)=2\left(x^2-x+\frac{1}{4}+\frac{1}{4}\right)=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

=> Min A = 1/2 

Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2

Vậy Min A = 1/2 <=> x = 1/2 

b) Đặt B = \(x^2-x+5=x^2-x+\frac{1}{4}+\frac{19}{4}=\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)

=> Min B = 19/4

Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2

Vậy Min  B = 19/4 <=> x =1/2

c) Đặt C = \(3x^2-4x+5=3\left(x^2-\frac{4}{3}x+\frac{5}{3}\right)=3\left(x-\frac{2}{3}\right)^2+\frac{11}{3}\ge\frac{11}{3}\)

=> Min C = 11/3 

Dấu "=" xảy ra <=> x - 2/3 = 0 <=> x = 2/3

Vậy Min C = 11/3 <=> x = 2/3

d) Đặt D = \(2x^2+3x+5=2\left(x^2+\frac{3}{2}x+\frac{5}{2}\right)=2\left(x+\frac{3}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)

=> Min D = 31/8

Dấu "=" xảy ra <=> x + 3/4 = 0 <=>  x =-3/4

Vậy Min D = 31/8 <=> x = -3/4

Khách vãng lai đã xóa

Các câu hỏi tương tự
nguyễn duy manhj
Xem chi tiết
Toàn Phan
Xem chi tiết
Tuyết Ly
Xem chi tiết
Tuyết Ly
Xem chi tiết
Lê Cao Bằng
Xem chi tiết
trần thị hoàng yến
Xem chi tiết
Pama eviL
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Hoang Phương Nguyên
Xem chi tiết