Ta có :
\(A=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}\)
\(=1-\frac{2}{x^2+1}\)
Mà \(A_{min}\Rightarrow\frac{2}{x^2+1}_{max};x^2+1\in N^∗\)
\(\Rightarrow x^2+1_{min}\Rightarrow x^2+1=1\)
\(\Rightarrow x^2=0\Rightarrow x=0\)
Vậy \(A_{min}=\frac{-1}{1}=-1\forall x=0\)
Không chắc nha, em mới lớp 6 :3
\(A=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}=1-\frac{2}{x^2+1}\)
\(\text{Biểu thức }A\text{ nhận giá trị nhỏ nhất khi : }x^2+1\text{ nhận giá trị bé nhất}\)
\(\Rightarrow\text{ }x^2\text{ nhận giá trị bé nhất }\) \(\Rightarrow\text{ }x^2=1\)
\(\text{Vậy ta có : }\)
\(A=1-\frac{2}{x^2+1}=1-\frac{2}{1+1}=1-\frac{2}{2}=1-1=0\)
\(\text{Vậy giá trị nhỏ nhất của biểu thức }A\text{ là }1\)
Ta có: \(\frac{x^2-1}{x^2+1}\)
\(=\frac{x^2+1-2}{x^2+1}\)
\(=\frac{x^2+1}{x^2+1}+\frac{-2}{x^2+1}\)
\(=1+\frac{-2}{x^2+1}\)
Vì \(x^2\ge0\Leftrightarrow x^2+1\ge1\Rightarrow\frac{1}{x^2+1}\le1\Leftrightarrow\frac{-2}{x^2+1}\ge-2\)
\(\Leftrightarrow1+\frac{-2}{x^2+1}\ge-2+1\Leftrightarrow A\ge-1\)
Vậy Amin = -1