Lời giải:
Ta có:
\(A=\frac{x^2-2x+5}{x^2-2x+2}=\frac{(x^2-2x+2)+3}{x^2-2x+2}=1+\frac{3}{x^2-2x+2}\)
\(=1+\frac{3}{(x-1)^2+1}\)
Vì \((x-1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow (x-1)^2+1\geq 1\)
\(\Rightarrow \frac{3}{(x-1)^2+1}\leq \frac{3}{1}=3\)
\(\Rightarrow A=1+\frac{3}{(x-1)^2+1}\leq 1+3=4\)
Vậy \(A_{\max}=4\Leftrightarrow x-1=0\leftrightarrow x=1\)