\(f\left(x\right)=x^{312}-x^{313}+x^{314}-x^{315}+x^{446}\)
\(=\left(x^{312}-1\right)-\left(x^{313}-x\right)+\left(x^{314}-1\right)-\left(x^{315}-x\right)+\left(x^{446}-1\right)-2x+3\)
\(=\left[\left(x^2\right)^{156}-1\right]-x\left[\left(x^2\right)^{156}-1\right]+\left[\left(x^2\right)^{157}-1\right]-x\left[\left(x^2\right)^{157}-1\right]+\left[\left(x^2\right)^{223}-1\right]-2x+3\)
\(=\left(x^2-1\right)A_{\left(x\right)}-x\left(x^2-1\right)B_{\left(x\right)}+\left(x^2-1\right)C_{\left(x\right)}-x\left(x^2-1\right)D_{\left(x\right)}+\left(x^2-1\right)E_{\left(x\right)}-2x+3\)
Vậy số dư là -2x+3