áp dụng t/c dãy tỉ số = nhau ,cộng xy+yz+zx vào =>rút ra xy;yz;zx rồi nhân từng vế các đẳng thức =>suy ra x,y,z(mk lười làm)
áp dụng t/c dãy tỉ số = nhau ,cộng xy+yz+zx vào =>rút ra xy;yz;zx rồi nhân từng vế các đẳng thức =>suy ra x,y,z(mk lười làm)
3. Cho : \(\frac{xy+1}{9}=\frac{yz+2}{15}=\frac{xz+3}{27}\)và xy +yz + zx=11 . TÌM x,y,z
Tìm x,y,z : \(\frac{xy+1}{9}=\frac{xz+2}{15}\frac{yz+3}{27}vàxy+xz+yz=11\)
Tìm x,y,z biết : \(\frac{xy}{2}=\frac{2yz}{9}=\frac{xz}{8}\)và xy + yz + zx = 29
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)Cho các số thực x,y,z\(\ne\)0(sau). Tính giá trị biểu thức M\(=\frac{x^{^2}+y^2+z^2}{xy+yz+xz}\). Giúp mình với.
cho \(\frac{xy}{x+y}=\frac{yz}{y+z}\)\(=\frac{xz}{x+z}\)
Tính \(M=\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Cho các số thực x,y,z khác 0 thoả mãn :\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
Tính giá trị của biểu thức : M = \(\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Cho các số thực x, y, z \(\ne\)0 thỏa mãn \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
Tính giá trị của biểu thức \(M=\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Tìm x;y;z biết
a) \(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b) \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\)
c) \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x+y+z=120
d) \(\frac{xy+1}{9}=\frac{yz+2}{15}=\frac{xz+3}{27}\) và xy+yz+xz=11
e) \(\frac{x+10}{7}=\frac{y+6}{9}=\frac{27-z}{11}\) và \(3x^2+7=199\)