Bài giải
\(2^a+2^b=2^{a+b}\)
\(2^a+2^b-2^{a+b}=\)
\(2^a\left(1-2^b\right)+2^b-1=1\)
\(2^a\left(1-2^b\right)-\left(1-2^b\right)=1\)
\(\left(2^a-1\right)\left(1-2^b\right)=1\)
Mà \(a,b\in N\) nên \(2^a-1\text{ };\text{ }1-2^b\in Z\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có :
\(2^a-1\) | -1 | 1 |
\(1-2^b\) | -1 | 1 |
\(a\) | loại | 1 |
\(b\) | 1 | loại |
Vậy \(a=b=1\)