\(S=\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{30}}\)
\(\Rightarrow4S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{29}}\)
\(\Rightarrow3S=4S-S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{29}}-\dfrac{1}{4}-\dfrac{1}{4^2}-...-\dfrac{1}{4^{30}}=1-\dfrac{1}{4^{30}}\)
\(\Rightarrow S=\dfrac{1-\dfrac{1}{4^{30}}}{3}\)