Cho hàm số y = f x xác định, liên tục và có đạo hàm trên đoạn a , b . Xét các khẳng định sau:
1. Hàm số f x đồng biến trên a ; b thì f ' x > 0 , ∀ x ∈ a ; b
2. Giả sử f a > f c > f b , ∀ x ∈ a ; b suy ra hàm số nghịch biến trên a ; b
3. Giả sử phương trình f ' x = 0 có nghiệm là x = m khi đó nếu hàm số y = f x đồng biến trên m ; b thì hàm số y = f x nghịch biến trên a , m
4. Nếu f ' x ≥ 0 , ∀ x ∈ a ; b , thì hàm số đồng biến trên a ; b
Số khẳng định đúng trong các khẳng định trên là
A. 1
B. 0
C. 3
D. 2
Tất cả các giá trị của tham số thực a để hàm số y = 2 − log 3 a x đồng biến trên R là
A. a < 3
B. 0 < a < 3
C. 0 < a ≤ 3.
D. 0 < a < 9
Tất cả các giá trị của a để hàm số y = x 3 + x 2 + a x đồng biến trên R là
A. a ≥ 1 3
B. a ≥ 0
C. a < 0
D. a > 1 3
Tổng tất cả các giá trị của a để hàm số f ( x ) = a 2 ( x - 2 ) x + 2 - 2 k h i x < 2 ( 1 - a ) x k h i x ≥ 2 liên tục trên R là
A. 1
B. 2
C. -1/2
D. -1
Một học sinh giải bài toán “Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x 3 + m x 2 + m − 2 x + 10 đồng biến trên i” theo các bước như sau:
Bước 1: Hàm số xác định trên i, và y ' = 3 m x 2 + 2 m x + m − 2
Bước 2: Yêu cầu bài toán tương đương với y ' > 0, ∀ x ∈ ℝ ⇔ 3 m x 2 + 2 m x + m − 2 > 0, ∀ x ∈ ℝ
Bước 3: ⇔ a = 3 m > 0 Δ ' = 6 m − 2 m 2 < 0 ⇔ m < 0 m > 3 m > 0
Bước 4: ⇔ m > 3. Vậy m>3
Hỏi học sinh này đã bắt đầu sai ở bước nào?
A. Bước 2
B. Bước 3
C. Bước 1
D. Bước 4
Gọi S là tập tất cả các giá trị thực của tham số m để hàm số y = x 2 + 1 - m x đồng biến trên nửa khoảng [ 3 ; + ∞ ) . Biết rằng S có dạng ( - ∞ ; a ] ∈ ℝ . Trên a 2 ; 2018 a 2 có tất cả bao nhiêu giá trị nguyên?
A. 1816
B. 1815
C. 1914
D. 1913
Biết rằng tập hợp tất cả các giá trị thực của tham số m để hàm số y = 1 3 x 3 − m − 1 x 2 − m − 3 x + 2017 m đồng biến trên các khoảng ( − 3 ; − 1 ) và ( 0 ; 3 ) là đoạn T = a ; b . Tính a 2 + b 2
A. a 2 + b 2 = 10
B. a 2 + b 2 = 13
C. a 2 + b 2 = 8
D. a 2 + b 2 = 5
Cho hàm số y = f ( x ) có đạo hàm trên khoảng a ; b . Xét các mệnh đề sau:
I. Nếu hàm số y = f ( x ) đồng biến trên khoảng a ; b thì f ' x > 0 , ∀ x ∈ a ; b .
II. Nếu f ' x < 0 , ∀ x ∈ a ; b thì hàm số y = f ( x ) nghịch biến trên khoảng a ; b .
III. Nếu hàm số y = f ( x ) liên tục trên a ; b và f ' x > 0 , ∀ x ∈ a ; b thì hàm số y = f ( x ) đồng biến trên đoạn a ; b .
Số mệnh đề đúng là:
A. 3
B. 0
C. 2
D. 1
Cho hàm số y = 2 x 3 - 3 m x 2 + 3 ( 5 m 2 + 1 ) x - 3 s i n x với m là tham số thực. Tìm tập hợp tất cả các giá trị của m để hàm số đồng biến trên (l;3).
A . m ≥ 1
B . m ≤ - 1
C . m > 0
D . m ∈ R