16+7n chia hết cho n+1
=> 7n+16 chia hết cho n+1
=> 7n+7+6 chia hết cho n+1
=> 7(n+1)+6 chia hết cho n+1
=> 6 chia hết cho n+1
=> n+1 thuộc Ư(6) = {1;-1;2;-2;3;-3;6;-6}
n+1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
Vậy n = {0;-2;1;-3;2;-4;5;-7}
\(16+7n⋮n+1\)
\(11+7\left(n+1\right)⋮n+1\)
\(\Rightarrow11⋮n+1\)
\(\Rightarrow n+1\in\left\{-11;-1;1;11\right\}\)
\(\Rightarrow n\in\left\{-12;-2;0;10\right\}\)