Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x\left(x+y\right)+\sqrt{x+y}=\sqrt{2y}\left(\sqrt{2y^3}+1\right)\\x^2y-5x^2+7\left(x+y\right)-4=6\sqrt[3]{xy-x+1}\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt[4]{32-x}-y^2+3=0\\\sqrt[4]{x}+\sqrt{32-x}+6y-24=0\end{matrix}\right.\)
1, x + y + z = 2( 2\(\sqrt{x+1}\) + 3\(\sqrt{y+2}\) + 4\(\sqrt{z+3}\) )
2, x^2 + 7x +14 = 2\(\sqrt{x}\) +4
3, 4\(\sqrt{x+1}\) = x^2 - 5x +14
4, 4x^2 + 3x + 3 = 4x\(\sqrt{x+3}\) + 2\(\sqrt{2x-1}\)
Giải hệ : \(\left\{{}\begin{matrix}\left(x-1\right)\sqrt{14-y}+\sqrt{\left(y-2\right)\left(11+2x-x^2\right)}=12\\x^3-3x^2-5x+6=2\sqrt{y-4}\end{matrix}\right.\)
Giải phương trình:
$a) \sqrt{x - 7} + \sqrt{9 - x} = x^{2} - 16x + 66$
$b) \sqrt{3x^{2} + 6x + 7} + \sqrt{5x^{2} + 10x + 14} = 4 - 2x - x^{2}$
$c) \sqrt{x - 2} + \sqrt{10 - x} = x^{2} - 12x + 40$
1. Giai phương trình: \(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)
2. Giai hệ phương trình: \(\left\{{}\begin{matrix}2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\end{matrix}\right.\)
Giải phương trình:
$a) \sqrt{x - 7} + \sqrt{9 - x} = x^{2} - 16x + 66$
$b) \sqrt{3x^{2} + 6x + 7} + \sqrt{5x^{2} + 10x + 14} = 4 - 2x - x^{2}$
$c) \sqrt{x - 2} + \sqrt{10 - x} = x^{2} - 12x + 40$
\(\left\{{}\begin{matrix}\sqrt{3y+1}+\sqrt{5x+4}=3xy-y+3\\\sqrt{2x^{^2}+2y^{^2}}+\sqrt{\frac{4}{3}\left(x^{^2}+y^{^2}+xy\right)}=2\left(x+y\right)\end{matrix}\right.\)
Giải phương trình, hệ phương trình:
a) \(\frac{\sqrt{x-2013}-1}{x-2013}+\frac{\sqrt{y-2014}-1}{y-2014}+\frac{\sqrt{z-2015}-1}{z-2015}=\frac{3}{4}\)
b) \(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)
c)\(\sqrt{x^2-3x+2}+\sqrt{x-3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
d)\(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\)
giải pt :
a) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
b0 \(4\sqrt{x+1}=x^2-5x+14\)
c) \(2x+3\sqrt{4-5x}+\sqrt{x+2}=8\)
d) \(\dfrac{x^2+x}{\sqrt{x^2+x+1}}=\dfrac{2-x}{\sqrt{x-1}}\)