2^99<2^100=(2^4)^25=16^25<17^25
5^299<5^300=(5^3)^100=125^100
3^501>3^500=(3^5)^100=243^100
=>125^100<243^100
=>5^299<3^501
\(\)\(17^{25}>16^{25}=\left(2^4\right)^{25}=2^{100}\)
\(2^{99}< 2^{100}mà17^{25}>16^{25}=2^{100}\)
\(=>2^{99}< 17^{25}\)
2^99<2^100=(2^4)^25=16^25<17^25
5^299<5^300=(5^3)^100=125^100
3^501>3^500=(3^5)^100=243^100
=>125^100<243^100
=>5^299<3^501
\(\)\(17^{25}>16^{25}=\left(2^4\right)^{25}=2^{100}\)
\(2^{99}< 2^{100}mà17^{25}>16^{25}=2^{100}\)
\(=>2^{99}< 17^{25}\)
Cho tam giac ABC va diem M nam trong tam giac do. Tia AM cat BC tai D.
a. So sanh goc BAD va goc BMD
b. So sanh goc BAC va goc BMC
Cho tam giac ABC, diem M nam trong tam giac do. Tia BM cat AC o K. a, so sanh AMK va ABM
b, so sanh AMC va ABC
cho tam giac ABC co D la trung diem cua AB , E la trung diem cua AC
a/so sanh Sade va Sabc
b/M la 1 diem bat ky tren BC . AM cat DE tai I so sanh Sadme va Sabc
c/ so sanh AI va AM
tinh va so sanh :
a)(2.5)^2 va 2^2.5^2
Cho tam giac ABC, diem M o trong tam giac do. Tia BM cat AC o K.
a/ So sanh: goc AMK va goc ABK
b/ So sanh: goc AMC va goc ABC
So sanh cac so huu ti sau
316/49 va 323/56
-214/317 va -21/36
BT1: So sanh
\(\frac{-13}{39}va-\frac{21}{63}\)
\(\frac{1}{234567}va-\frac{2}{14}\)
BT2: So sanh
\(\frac{-39}{65}va-\frac{21}{35}\)
\(\frac{1}{2012}va-\frac{1}{14}\)
so sanh so huu ti:
c) 278/37 va 287/46
d) -157/623 va -47/213
So sanh A va B
A=-2012/4025 va B=-1999/3997