Bất phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Diệu Linh

So sánh

\(3\left(a^2+b^2+c^2\right)\)\(\left(a+b+c\right)^2\)

Nguyễn Việt Lâm
21 tháng 4 2020 lúc 8:40

Xét \(3\left(a^2+b^2+c^2\right)-\left(a+b+c\right)^2\)

\(=3a^2+3b^2+3c^2-\left(a^2+b^2+c^2+2ab+2bc+2ca\right)\)

\(=\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ca\right)\)

\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) \(\forall a;b;c\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)


Các câu hỏi tương tự
Wang Soo Yi
Xem chi tiết
Cold Wind
Xem chi tiết
guard
Xem chi tiết
guard
Xem chi tiết
guard
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
An Nguyễn Thiện
Xem chi tiết
Văn Quyết
Xem chi tiết
Nguyễn Phi Nhung
Xem chi tiết