\(\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}=\frac{\left(\sqrt{x+3}\right)^2+2\sqrt{x+3}\sqrt{x-3}}{2.\left(\sqrt{x-3}\right)^2+\sqrt{x+3}\sqrt{x-3}}\)
\(=\frac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}=\frac{\sqrt{x+3}}{\sqrt{x-3}}\)
\(=\frac{\sqrt{x^2-9}}{x-3}\)