giải phương trình: \(\frac{x^2}{2}+\frac{18}{x^2}=13\left(\frac{x}{2}-\frac{3}{x}\right)\)
Q= \(\frac{\sqrt{a}\left(1-a\right)^2}{1-a^2}:\left[\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)
a) Rút gọn biểu thức Q? b) Xét dấu of biểu thức P= a.(Q-\(\frac{1}{2}\))
Rút gọn biểu thức
\(B=\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\frac{1+x\sqrt{x}}{1+\sqrt{x}}\right)-\sqrt{x}\)
Rút gọn các biểu thức sau:
a) A=\(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}+\frac{2\sqrt{2}-\sqrt{6}}{\sqrt{2}}\)
b)B=\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\left(x\ge0;x\ne1\right)\)
cho biểu thức P=\(\left(\frac{2x}{x\sqrt{x}+\sqrt{x}-x-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)
a) rút gọn biểu thức P
b) tính giá trị của P khi x=\(\frac{1}{\sqrt{5}-2}-\frac{1}{\sqrt{5}+2}\)
Cho biểu thức A= \(\left(\frac{1}{\sqrt{x-1}}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x-2}}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
Cho biểu thức
A=\(\frac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}}{x-1}\)
B=\(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}\)
a)Rút gọn biểu thức A,B
b)Tìm x để \(\frac{B}{A}-\frac{\sqrt{x}+1}{8}\ge1\)
c)Tìm x để B = A\(\left|\sqrt{x}-1\right|\)
1. Rút gọn
P=\(2\sqrt{1+\frac{1}{4}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2}:\left[\sqrt{1+\frac{1}{4}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2}-\frac{1}{2}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2\right]\)
cho biểu thức P=\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{1}{x+\sqrt{x}}\right).\left(\frac{1}{\sqrt{x}+1}+\frac{1}{x-1}\right)\)
tìm điều kiện xác định và rút gọn P
Rút gọn biểu thức sau:
\(C=\left(\frac{x}{x+3\sqrt{x}}+\frac{1}{\sqrt{x}+3}\right):\left(1-\frac{2}{\sqrt{x}}+\frac{6}{x+3\sqrt{x}}\right)\)