\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(\Rightarrow2A=2^{101}-2^{100}+2^{99}-2^{98}+....+2^3-2^2\)
\(\Rightarrow2A+A=\left(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\right)+\left(2^{100}-2^{99}+...+2^2-2\right)\)
\(\Rightarrow3A=2^{101}-2\)
\(\Rightarrow A=\frac{2^{101}-2}{3}\)
Vậy ......
\(2A=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
\(\Rightarrow2A+A=2^{101}-2\)
\(\Rightarrow3A=2^{101}-2\)
\(\Rightarrow A=\frac{2^{101}-2}{3}\)