\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y+z\right)^3-x^3\right]-\left(y^3+z^3\right)\)
\(=\left(x+y+z-x\right)\left[\left(x+y+z\right)^2+\left(x+y+z\right)x+x^2\right]-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz+x^2+xy+xz+x^2\right)-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right)\left(3x^2+y^2+z^2+3xy+3xz+2yz\right)-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right)\left(3x^2+y^2+z^2+3xy+3xz+2yz-y^2+yz-z^2\right)\)
\(=\left(y+z\right)\left(3x^2+3xy+3xz+3yz\right)\)
\(=3\left(y+z\right)\left(x^2+xy+xz+yz\right)\)