Phải \(2x^4\) thì mới phân tích được c hứu?
x^8+x^4+1=x^8-x^2+x^4-x+x^2+x+1=x^2(x^6-1)+x(x^3-1)+x^2+x+1=x^2(x^3-1)(x^3+1)+x(x^3-1)+x^2+x+1=x^2(x^3+1)(x-1)(x^2+x+1)+x(x-1)(x^2+x+1)+x^2+x+1=(x^2+x+1)[x^2(x^3+1)(x-1)+x(x-1)+1)]
\(x^8+x^4+1=x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1+x^2\right)\left(x^4+1-x^2\right).\)
\(x^8+x^4+1=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)