\(N=\sqrt{1+2011^2+\frac{2011^2}{2012^2}+\frac{2012.2011}{ }}kolàsốtựnhieen\)
xem lại đề
\(N=\sqrt{1+2011^2+\frac{2011^2}{2012^2}+\frac{2012.2011}{ }}kolàsốtựnhieen\)
xem lại đề
\(S=\sqrt{1+2010^2+\frac{2010^2}{2011^2}}+\frac{2010}{2011}+\sqrt{1+2011^2+\frac{2011^2}{2012^2}}+\frac{2011}{2012}+\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
\(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+\frac{1}{5\sqrt{4}+4\sqrt{5}}+.....+\frac{1}{2012\sqrt{2011}+2011\sqrt{2012}}\)
rút gọn giúp mình với
a, Cm công thức
\(\forall n\ge1\) ta có \(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, áp dụng tính
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)
Tìm x,y,z thỏa mãn
\(\frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}+\frac{\sqrt{z-2012}-1}{z-2012}=\frac{3}{4}\)
Tính: \(\sqrt{2012-2\sqrt{2011}}+1\)
CMR: \(\frac{1}{3}< =\frac{x^2+x+1}{x^2-x+1}< =3\)
Tìm giá trị nhỏ nhất của biểu thức \(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)
Giai phương trình a, \(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
b,\(\frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}+\frac{\sqrt{z-2012}-1}{2012}=\frac{3}{4}\)
chứng minh A= \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2012\sqrt{2011}}\)<2
1 giải phương trình
\(\frac{x+2011}{2013}+\frac{x+2012}{2012}=\frac{x+2010}{2014}+\frac{x+2013}{2011}\)
2 . \(\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)