\(A=cosx+cos3x+cos2x=2cos2x.cosx+cos2x\)
\(=cos2x\left(2cosx+1\right)\)
\(B=sin3x+sin5x+sin4x=2sin4x.cosx+sin4x\)
\(=sin4x\left(2cosx+1\right)\)
\(A=cosx+cos3x+cos2x=2cos2x.cosx+cos2x\)
\(=cos2x\left(2cosx+1\right)\)
\(B=sin3x+sin5x+sin4x=2sin4x.cosx+sin4x\)
\(=sin4x\left(2cosx+1\right)\)
Rút gọn biểu thức:
a, cos2x - 4sin2\(\frac{x}{2}\)cos2\(\frac{x}{2}\)
b, \(\frac{sin3x}{sinx}-\frac{cos3x}{cosx}\)
c, \(\frac{cosx+cos2x+cos3x+cos4x}{sinx+sin2x+sin3x+sin4x}\)
Biến đổi thành tích các biểu thức sau A= cos2x + sin4x - cos6x B = sinx - sin2x + sin5x + sin8x
Chứng minh các đồng nhất thức :
a) \(\dfrac{1-\cos x+\cos2x}{\sin2x-\sin x}=\cot x\)
b) \(\dfrac{\sin x+\sin\dfrac{x}{2}}{1+\cos x+\cos\dfrac{x}{2}}=\tan\dfrac{x}{2}\)
c) \(\dfrac{2\cos2x-\sin4x}{2\cos2x+\sin4x}=\tan^2\left(\dfrac{\pi}{4}-x\right)\)
d) \(\tan x-\tan y=\dfrac{\sin\left(x-y\right)}{\cos x\cos y}\)
( 1+ sinx)(cotx-cosx)= cos3x
Rút gọn biểu thức sau
A=sinx -sin2x / cosx +cos2x
Mọi người giúp em giải bài này ạ, em cảm ơn
Bài 1: Rút gọn biểu thức:
A=\(\frac{\sin2x+\sin x}{1+\cos2x+\cos x}\)
B=\(cota\left(\frac{1+\sin^2a}{\cos a}-cosa\right)\)
C=\(\frac{1+\cos x+\cos2x+\cos3x}{2\cos^2x+\cos x-1}\)
D=\(\frac{2\cos\left(\frac{\pi}{2}-x\right)\cdot\sin\left(\frac{\pi}{2}+x\right)\cdot\tan\left(\pi-x\right)}{\cot\left(\frac{\pi}{2}+x\right)\cdot\sin\left(\pi-x\right)}-2\cos x\)
E=\(\cos^2x\cdot\cot^2x+3\cos^2x-\cot^2x+2\sin^2x\)
\(F=\frac{\sin^2x+\sin^2x\tan^2x}{\cos^2x+\cos^2x\tan^2x}\)
\(G=\frac{1+cos2a-cosa}{2sina-sina}\)
H=\(sin^{^{ }4}\left(\frac{\pi}{2}+\alpha\right)-cos^4\left(\frac{3\pi}{2}-\alpha\right)+1\)
Bài 2: chứng minh
a) cho \(\Delta ABCchứngminhsin\frac{A+B}{2}=cos\frac{C}{2}\)
b) chứng minh biểu thức sau độc lập với biến x:
A=\(cosx+cos\left(x+\frac{2\pi}{3}\right)+cos\left(x+\frac{4\pi}{3}\right)\)
c)cho \(\Delta\) ABC chứng minh : sin A+sin B+ sin C= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
d)CMR: \(\frac{cos2a}{1+sin2a}=\frac{cosa-sina}{cosa+sina}\)
e) CMR:\(E=\frac{sin\alpha+cos\alpha}{cos^3\alpha}=1+tan\alpha+tan^2\alpha+tan^3\alpha\)
f) CMR \(\Delta\)ABC cân khi và chỉ khi \(sinB=2cosAsinC\)
g) CM: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
h)CM: \(\left(cos3x-cosx\right)^2+\left(sin3x-sinx\right)^2=4sin^2x\)
k) CMR trong tam giac ABC ta có: \(sin2A+sin2B+sin2C=4sinA\cdot sinB\cdot sinC\)
Bài 3: giải bất phương trình:
a)\(\frac{\left(1-3x\right)\left(2x^2+1\right)}{-2x^2-3x+5}>0\)
b)\(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\ge0\)
c)\(\frac{\left(3x-2\right)\left(x^2-9\right)}{x^2-4x+4}\le0\)
d)\(\frac{\left(2x^2+3x\right)\left(3-2x\right)}{1-x^2}\ge0\)
e)\(\frac{\left(x^2+2x+1\right)\left(x-1\right)}{3-x^2}\)
f)\(\frac{2x+1}{-x^2+x+6}\ge0\)
Cho \(\dfrac{cos7x+cos4x+cosx}{sin7x+sin4x+sinx}=\dfrac{1}{2}\)
Tính cos 8x
Chứng minh các đẳng thức sau:
sinx(1+cos2x)=sin2x.cosx
\(tanx-\frac{1}{tanx}=-\frac{2}{tan2x}\)
\(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=tanx\)
A=cos8x.cot4x-\(\frac{\left(cot^22x-1\right)}{2cot2x}\)
B=cos10x -2cos24x+6cos3x.cosx-cosx -8cosx.cos33x