Đâu là định nghĩa của đường tròn ngoại tiếp tam giác?
A.Đường tròn đi qua ba đỉnh của tam giác.
B.Đường tròn có tâm là giao của ba đường phân giác trong tam giác.
C.Đường tròn có tâm là giao của ba đường trung trực trong tam giác.
D.Đường tròn tiếp xúc với ba cạnh của tam giác.
Thế nào là đường tròn ngoại tiếp một tam giác? Nêu cách xác định tâm của đường tròn ngoại tiếp tam giác.
Hãy nối mỗi ô ở cột trái với một ô ở cột phải để được khẳng định đúng:
(1) Nếu tam giác có ba góc nhọn | (4) thì tâm của đường tròn ngoại tiếp tam giác đó nằm bên ngoài tam giác |
(2) Nếu tam giác có góc vuông | (5) thì tâm của đường tròn ngoại tiếp tam giác đó nằm bên trong tam giác |
(3) Nếu tam giác có góc tù | (6) thì tâm của đường tròn ngoại tiếp tam giác đó là trung điểm của cạnh lớn nhất |
(7) thì tâm của đường tròn ngoại tiếp tam giác đó là trung điểm của cạnh nhỏ nhất |
Hãy nối mỗi ô ở cột trái với một ô ở cột phải để được khẳng định đúng:
(1) Nếu tam giác có ba góc nhọn | (4) thì tâm của đường tròn ngoại tiếp tam giác đó nằm bên ngoài tam giác |
(2) Nếu tam giác có góc vuông | (5) thì tâm của đường tròn ngoại tiếp tam giác đó nằm bên trong tam giác |
(3) Nếu tam giác có góc tù | (6) thì tâm của đường tròn ngoại tiếp tam giác đó là trung điểm của cạnh lớn nhất |
(7) thì tâm của đường tròn ngoại tiếp tam giác đó là trung điểm của cạnh nhỏ nhất |
Cho tam giác ABc , lấy D trên cạnh BC , vẽ đường tròn tâm I qua D tiếp xúc với AB tại B. Vẽ đường tròn tâm K qua D tiếp xúc với AC tại C . Gọi M là giao điểm của hai đường tròn đó
1. CM : tứ giác ABMC nội tiếp
2. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC . CM : 3 đường tròn tâm I, tâm K và tâm O đồng quy
3. CM : MD di chuyển qua 1 điểm cố định
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trên cạnh BC lấy điểm D sao cho ^ABC = ^CAD. (K) là đường tròn nội tiếp tam giác ADC. E là chân đường phân giác xuất phát từ đỉnh B của tam giác ABC. Tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L. CM tâm đường tròn ngoại tiếp tam giác BLC nằm trên (O) ?
cho tam giác ABC nhọn có trực tâm H. điểm G được xác định saở chỗ tứ giác ABGH là hình bình hành.điểm I tren đường thang GH sao cho AC đi qua trung điểm HI.đường thẳng AC cắt đường tròn ngoại tiếp tam giác GCI tại điểm thứ 2 là J.
1.cm: goc BGC=goc BAC
2.cm:IJ=AH
3.điểm k đối xứng vs J qua T. gọi O là tâm đường tròn ngoại tiếp tam giác THK. cm:TO vuông góc CG
Mỗi câu sau đây đúng hay sai?
a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy
d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy.
e) Giao điểm ba đường phân giác trong của một tam giác là tâm đường tròn nội tiếp tam giác ấy.
f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy.
g) Tứ giác có tổng độ dài các cặp cạnh đối nhau bằng nhau thì ngoại tiếp được đường tròn
h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn.
i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó.
Cho tam giác cân tại A nội tiếp đường tròn (O). Gọi M là trung điểm của AC. G là trọng tâm của tam giác ABM. Gọi Q là giao điểm BM và GO. Xác định tâm đường tròn ngoại tiếp BGQ
Cho tam giác ABC nhọn nội tiếp đường tròn O, có các đường cao AK,BI cắt nhau ở H.
a) Xác định tâm F của đường tròn ngoại tiếp tam giác BKI, tâm D của đường tròn ngoại tiếp tam giác IHF, tâm E của đường tròn ngoại tiếp tam giác AFC.
b)Cm: AEDF là hình bình hành.