Chọn trục \(Ox\) sao cho \(O\) trùng với tâm của đáy, chiều dương của trục là chiều hướng lên trên.
Nếu cắt lều bởi một mặt phẳng cách mặt đáy \(x{\rm{ }}\left( {\rm{m}} \right)\), thì mặt phẳng đó cắt trục \(Ox\) tại điểm có hoành độ \(x\). Mặt cắt là hình vuông có cạnh \(\sqrt {9 - {x^2}} {\rm{ }}\left( {\rm{m}} \right)\).
Như vậy, diện tích mặt cắt là \(S\left( x \right) = {\left( {\sqrt {9 - {x^2}} } \right)^2} = 9 - {x^2}\).
Suy ra thể tích của lều là \(V = \int\limits_0^3 {S\left( x \right)dx} = \int\limits_0^3 {\left( {9 - {x^2}} \right)dx} = \left. {\left( {9x - \frac{{{x^3}}}{3}} \right)} \right|_0^3 = 18\)(\({{\rm{m}}^3}\))
Đúng 0
Bình luận (0)