0" là A. Với mọi số thực x, x² ≤ 0 ..."> 0" là A. Với mọi số thực x, x² ≤ 0 ..." />
Cho mệnh đề P: "Với mọi số thực x, nếu x là số hữu tỉ thì 2x là số hữu tỉ".
Xác định tính đúng - sai của các mệnh đề P, P
A. P đúng, P sai
B. P đúng, P đúng
C. P sai, P sai
D. P sai, P đúng
Mệnh đề phủ định của mệnh đề P(x): “ x 2 + 3x + 1 > 0 với mọi x” là:
A. Tồn tại x sao cho x 2 + 3x + 1 > 0
B. Tồn tại x sao cho x 2 + 3x + 1 ≤ 0
C. Tồn tại x sao cho x 2 + 3x + 1 = 0
D. Tồn tại x sao cho x 2 + 3x + 1 < 0
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Mọi số thực cộng với số đối của nó đều bằng 0.
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Mọi số thực khác 0 nhân với nghịch đảo của nó đều bằng 1
Sử dụng bất đẳng thức để viết các mệnh đề sau
a) x là số dương.
b) y là số không âm.
c) Với mọi số thực α, |α| là số không âm.
d) Trung bình cộng của hai số dương a và b không nhỏ hơn trung bình nhân của chúng.
Với mỗi số thực x, xét các mệnh đề P: “ x 2 = 1”, Q: “x = 1” Phát biểu mệnh đề P ⇒ Q và mệnh đề đảo của nó;
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Mọi số (thực) cộng với 0 đều bằng chính nó ;
Với mỗi số thực x, xét các mệnh đề P: “ x 2 = 1”, Q: “x = 1” Chỉ ra một giá trị của x mà mệnh đề P ⇒ Q sai
Dùng các kí hiệu để viết lại mệnh đề sau và viết mệnh đề phủ định của nó: Q: “Với mọi số thực thì bình phương của nó là một số không âm”
A. Q: ∀ x ∈ R , x 2 ≥ 0 mệnh đề phủ định là Q : ∀ x ∈ R , x 2 < 0
B. Q: ∃ x ∈ R , x 2 ≥ 0 mệnh đề phủ định là : Q : ∃ x ∈ R , x 2 < 0
C. Q: ∀x ∈ R, x2 ≥ 0 mệnh đề phủ định là Q : ∃ x ∈ R , x 2 < 0
D. Q: x ∈ R, x2 ≥ 0 mệnh đề phủ định là Q : ∀ x ∈ R , x 2 < 0