Bài 2: Tích phân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Mặt cắt ngang của một ống dẫn khí nóng là hình vành khuyên như Hình 9. Khí bên trong ống được duy trì ở 150°C. Biết rằng nhiệt độ T(°C) tại điểm A trên thành ống là hàm số của khoảng cách x (cm) từ A đến tâm của mặt cắt và T′(x) = \(-\dfrac{30}{x}\) (6 ≤ x ≤ 8).               

                      (Nguồn: Y.A.Cengel, A.I.Gahjar, Heat and Mass Transfer, McGraw Hill, 2015)

Tìm nhiệt độ mặt ngoài của ống.

datcoder
29 tháng 10 lúc 23:00

Do nhiệt độ của khí bên trong ống luôn được duy trì ở \({150^o}{\rm{C}}\), nên \(T\left( 6 \right) = 150\).

Nhiệt độ mặt ngoài của ống là \(T\left( 8 \right) = \left[ {T\left( 8 \right) - T\left( 6 \right)} \right] + T\left( 6 \right) = \int\limits_6^8 {T'\left( x \right)dx}  + T\left( 6 \right)\).

Ta có \(\int\limits_6^8 {T'\left( x \right)dx}  = \int\limits_6^8 { - \frac{{30}}{x}dx}  =  - 30\int\limits_6^8 {\frac{1}{x}dx =  - 30.\left. {\left( {\ln \left| x \right|} \right)} \right|_6^8 =  - 30\ln 8 + 30\ln 6} \).

Vậy nhiệt độ bên ngoài mặt ống là \(T\left( 8 \right) =  - 30\ln 8 + 30\ln 6 + 150 \approx 141,{37^o}C\)