bài 1:
a) \(cos\left(2x-\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{3}\right)=0\)
b) \(cos\left(2x+30^o\right)+sin\left(x-30^o\right)=0\)
a) \(2sin\left(x+\dfrac{\pi}{3}\right)+1=0\)
b) \(1+2sin\left(x-30^o\right)=0\)
c) \(\sqrt{3}+2sin\left(x-\dfrac{\pi}{6}\right)=0\)
d) \(2sin\left(x+10^o\right)+\sqrt{3}=0\)
e) \(\sqrt{2}+2sin\left(x-15^o\right)=0\)
f) \(\sqrt{2}sin\left(x-\dfrac{\pi}{3}\right)+1=0\)
g) \(3+\sqrt{5}sin\left(x+\dfrac{\pi}{3}\right)=0\)
h) \(1+sin\left(x-30^o\right)=0\)
i) \(3+\sqrt{5}sin\left(x-\dfrac{\pi}{6}\right)=0\)
k) \(2\sqrt{2}sin^2x-sin2x=0\)
giải các pt
a) \(cos3x+cos\left(x-120^o\right)=0\)
b) \(2cos\left(x-45^o\right).sin\left(x-45^o\right)=cos2x\)
c) \(\left(cosx+sinx\right)^2=1+cos4x\)
Tìm tập xác định của y=f(x)=\(\dfrac{\sin\left(3x\right)}{\tan^2\left(x\right)-1}+\sqrt{\dfrac{2-\cos\left(x\right)}{1+\cos\left(x\right)}}\)
Phương trình: \(\dfrac{Sin^42x+Cos^42x}{Tan\left(\dfrac{\pi}{4}-x\right)Tan\left(\dfrac{\pi}{4}+x\right)}=Cos^4x\) có bao nhiêu điểm biểu diễn nghiệm trên đường tròn lượng giác
giải các pt
a) \(sinx-2cosx=0\)
b) \(tan2x-cotx=0\)
c) \(sin2x-2\sqrt{3}cos^2x=0\)
d) \(tan\left(3x-50^o\right)+cot\left(x-30^o\right)=0\)
giải các phương trình sau : a) \(\tan3x=\tan\frac{3\pi}{5}\) ; b) \(\tan\left(x-15^o\right)=5\) ; c) \(\tan\left(2x-1\right)=\sqrt{3}\) ; d) \(\cot2x=\cot\left(-\frac{1}{3}\right)\) ; e) \(\cot\left(\frac{x}{4}+20^o\right)=-\sqrt{3}\) ; f) \(\cot3x=\tan\frac{2\pi}{5}\)
tìm tập xác định của hàm số lượng giác sau
a)\(y=\dfrac{tan\left(2x-\dfrac{\pi}{4}\right)}{\sqrt{1-sin\left(x-\dfrac{\pi}{8}\right)}}\)
b)\(y=\dfrac{tan\left(x-\dfrac{\pi}{4}\right)}{1-cos\left(x+\dfrac{\pi}{3}\right)}\)
c)\(y=\dfrac{3}{cosx-cos3x}\)
d)\(y=\dfrac{4}{sin^2x-cos^2x}\)
e)\(y=\dfrac{1+cot\left(\dfrac{\pi}{3}+x\right)}{tan^2\left(3x-\dfrac{\pi}{4}\right)}\)
giải các pt
a) \(tan2x+tan40^o=0\)
b) \(tan\left(2x-15^0\right)-1=0\)
c) \(3tan\left(60^o-x\right)+\sqrt{3}=0\)
d) \(tan\left(3x+\frac{2\pi}{5}\right)+tan\frac{\pi}{5}=0\)