a) x3 - 25x b) x2 – xy - 5x + 5y c) x2 – 3x – 10 d) x2 + 2xy - x - y + y2 - 12
a) (x2+ 2xy+ y2) : ( x+y)
b) ( 64x3+ 1) : ( 4x+ 1)
c) ( x2- 2xy+ y2) : ( y- x)
a) (x2 + 2xy + y2) : (x + y)
b) (125x3 + 1) : (5x + 1)
c) (x2 – 2xy + y2) : (y – x)
1.
a.(-xy)(-2x2y+3xy-7x)
b.(1/6x2y2)(-0,3x2y-0,4xy+1)
c.(x+y)(x2+2xy+y2)
d.(x-y)(x2-2xy+y2)
2.
a.(x-y)(x2+xy+y2)
b.(x+y)(x2-xy+y2)
c.(4x-1)(6y+1)-3x(8y+4/3)
Chứng minh: x2 – 2xy + y2 + 1 > 0 với mọi số thực x và y.
-x2 + 2xy - y2 / x+ y = ? / y2 - x2
Câu 1 (3,0 điểm): Tính
a) 3x2 (2x2 − 5x − 4)
b) (x + 1)2 + ( x − 2 )(x + 3 ) − 4x
c) (6 x5 y2 − 9 x4 y3 +12 x3 y4 ) : 3x3 y2
Câu 2 (4,0 điểm): Phân tích đa thức thành nhân tử
a) 7x2 +14xy b) 3x + 12 − (x2 + 4x)
c ) x2 − 2xy + y2 − z2 d) x2 − 2x −15
Câu 3 (0,5 điểm): Tìm x
a) 3x2 + 6x = 0 b) x (x − 1) + 2x − 2 = 0
Câu 4 (2,0 điểm): Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB ở E, tia phân giác của góc B cắt CD ở F.
a) Chứng minh DE song song BF
b) Tứ giác DEBF là hình gì?
Câu 5 (0,5 điểm ):
Chứng minh rằng A= n3 + (n+1)3 + (n+2)3 chia hết cho 9 với mọi n ∈ N*
Cho M = x 2 + y 2 + x y x 2 − y 2 : x 3 − y 3 x 2 + y 2 − 2 x y và N = x 2 − y 2 x 2 + y 2 : x 2 − 2 x y + y 2 x 4 − y 4 . Khi x + y = 6, hãy so sánh M và N
A. M < N
B. M > N
C. M ≥ N
D. M = N
Cho x, y, z ≠0 và (y2+z2−x2)/2yz +(z2+x2−y2)/2xz +(x2+y2−z2)/2xy =1. Chứng minh rằng trong ba phân thức đã cho có một phân thức bằng 1 và một phân thức bằng -1.