giúp mink làm với Cho ΔABC có AB AC < . M là trung điểm của BC. Trên tia đối của tia MA lấy điểm I sao cho MA MI = . ( Hình 18). a) Chứng minh ΔABM ΔICM = . b) Chứng minh AB IC ∥ . c) Kẻ BH và CK vuông góc với AI . Chứng minh BH CK = . d) BH cắt AC tại E CK , cắt BI tại F . Chứng minh EMF , , thẳng hàng
a: Xét ΔABM và ΔICM có
MA=MI
\(\widehat{AMB}=\widehat{IMC}\)
MB=MC
Do đó: ΔABM=ΔICM
b: ΔABM=ΔICM
=>\(\widehat{ABM}=\widehat{ICM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CI
c: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có
MB=MC
\(\widehat{BMH}=\widehat{CMK}\)
Do đó: ΔBHM=ΔCKM
=>BH=CK
d: BH\(\perp\)AI
CK\(\perp\)AI
Do đó: BH//CK
=>BE//CF
Xét tứ giác BECF có
BE//CF
CE//BF
Do đó: BECF là hình bình hành
=>BC cắt EF tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của EF
=>E,M,F thẳng hàng