\(\Leftrightarrow\sqrt[3]{\left(2x^2+3x+2\right)}+\sqrt[3]{\left(x^2+3x+3\right)}=6x^2+12x+8\)
\(\Rightarrow\sqrt[3]{\left(2x^2+3x+2\right)}+\sqrt[3]{\left(x^2+3x+3\right)}-6x^2-12x-8=0\)
=>x=-1
\(\Leftrightarrow\sqrt[3]{\left(2x^2+3x+2\right)}+\sqrt[3]{\left(x^2+3x+3\right)}=6x^2+12x+8\)
\(\Rightarrow\sqrt[3]{\left(2x^2+3x+2\right)}+\sqrt[3]{\left(x^2+3x+3\right)}-6x^2-12x-8=0\)
=>x=-1
Giải pt
\(\sqrt[3]{x^2+3x+3}+\sqrt[3]{2x^2+3x+2}=6x^2+12x+8\)
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
giải phương trình \(\sqrt[3]{x^2+3x+3}\)+\(\sqrt[3]{2x^2+3x+2}\)=6x2+12x+8
giải phương trình :
1, \(\sqrt{4-x^2}+2\sqrt[3]{x^4-4x^3+4x^2}=\left(x-1\right)^2+1-\left|x\right|\)
2, \(2x^3+9x^2-6x\left(1+2\sqrt{6x-1}\right)+2\sqrt{6x-1}+8=0\)
3, \(x^3-3x+1=\sqrt{8-3x^2}\)
4, \(\left(4x^2+x-1\right)\sqrt{x^2+x+2}=\left(4x^2+3x+5\right)\sqrt{x^2-1}\)
5, \(\sqrt[3]{3-x^3}=2x^3+x-3\)
6, \(\sqrt[3]{x^2+3x+3}+\sqrt[3]{2x^2+3x+2}=6x^2+12x+8\)
7, \(\frac{x^2+2x-8}{x^2-2x+3}=\left(x+1\right)\left(\sqrt{x+2}-2\right)\)
8, \(\frac{4x-1}{\sqrt{4x-3}}+\frac{11-2x}{\sqrt{5-x}}=\frac{15}{2}\)
9, \(x^2-4x+14+\sqrt{x+4}=2\sqrt{1+12x}+\sqrt{1+\sqrt{1+12x}}\)
(\(\sqrt[3]{x^2+3x+3}\)+\(\sqrt[3]{2x^2+3x+2}\))=6x2+12x+8
mình cần gấp!!!!!
B1:Giải pt vô tỉ sau 4\(x^4\)+\(x^2\)+3x+4=3\(\sqrt[3]{16x^3+12x}\)
B2:Giải pt vô tỉ sau 4\(x^2\)-11x+10=(x-1)\(\sqrt{2x^2-6x+2}\)
giải pt:
1) \(4\sqrt{\frac{x^2}{3}+4}=1+\frac{3x}{2}+\sqrt{6x}\)
2) \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
3) \(\sqrt{1+x}+\sqrt{1-x}+\frac{x^2}{4}=2\)
Giải các phương trình dưới đây
1, \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
2,\(\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\)
3, \(\sqrt{6y-y^2-5}-\sqrt{x^2-6x+10}=1\) (x=3 ; y=3)
Giải các phương trình sau
a)\(x^3+8x=5x^2+4\)
b) \(x^3+3x^2=x+6 \)
c)\(2x+3\sqrt{x}=1\)
4) \(x^4+4x^2+1=3x^3+3x\)
5)\((12x-1)(6x-1)(4x-1)(3x-1)=330\)