Ta xét phương trình \(4x-5y-6xy+7=0\Leftrightarrow2x\left(2-3y\right)=5y-7\)
\(\Leftrightarrow2x=\frac{5y-7}{2-3y}\Leftrightarrow x=\frac{5y-7}{4-6y}\)
Để x nguyên thì \(\frac{5y-7}{4-6y}\)nguyên hay \(5y-7⋮4-6y\)
\(\Leftrightarrow6\left(5y-7\right)⋮4-6y\Leftrightarrow30y-42⋮4-6y\)
\(\Leftrightarrow-22-5\left(4-6y\right)⋮4-6y\)
Mà \(-5\left(4-6y\right)⋮4-6y\)nên \(-22⋮4-6y\)hay \(4-6y\inƯ\left(22\right)=\left\{\pm1;\pm2;\pm11;\pm22\right\}\)
Mà 4 - 6y chẵn nên \(4-6y\in\left\{\pm2;\pm22\right\}\)
Lập bảng:
\(4-6y\) | \(-2\) | \(2\) | \(-22\) | \(22\) |
\(y\) | \(1\) | \(\varnothing\) | \(\varnothing\) | \(-3\) |
\(x=\frac{5y-7}{4-6y}\) | \(1\) | \(\varnothing\) | \(\varnothing\) | \(-1\) |
Vậy phương trình có 2 nghiệm \(\left(x,y\right)\in\left\{\left(1;1\right);\left(-1;-3\right)\right\}\)