\(\left(x^2+2x\right)^2-2x^2-4x=4\)
\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2x\right)=4\)
Đặt \(x^2+2x=t\)
pt <=> \(t^2-2t=4\)
\(\Leftrightarrow t^2-2t-4=0\)
...
\(\left(x^2+2x\right)^2-2x^2-4x=4\)
\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2\right)=4\)
Đặt \(x^2+2x=a\)
\(\Rightarrow pt\Leftrightarrow a^2-2a=4\Leftrightarrow a^2-2a-4=0\)
\(\cdot\Delta=\left(-2\right)^2-4.\left(-4\right)=20,\sqrt{\Delta}=\sqrt{20}\)
Vậy pt ẩn phụ có 2 nghiệm phân biệt
\(a_1=\frac{2+\sqrt{20}}{2}=\sqrt{5}+1\);\(a_2=\frac{2-\sqrt{20}}{2}=1-\sqrt{5}\)
Thay vào \(x^2+2x=a\),dùng delta giải.