đặt x\(^2\)+ x - 2 là a
\(\Rightarrow\)a(a - 1) = 12
\(\Rightarrow\)\(a^2\)- \(a\)\(-12\)\(=\)\(0\)\(\Rightarrow\)\(a^2\)\(+3a-4a-12=0\)
\(\Rightarrow\)\(a\left(a+3\right)\)\(-4\left(a+3\right)\)\(=0\)
\(\Rightarrow\)\(\left(a+3\right)\).\(\left(a-4\right)\)\(=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}a+3=0\\a-4=0\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}a=-3\\a=4\end{cases}}\)
*với a= -3\(\Rightarrow\)x\(^2\)+2x -2 = -3 \(\Rightarrow\)x\(^2\)+ 2x +1=0\(\Rightarrow\)(x+1)\(^2\)=0 \(\Leftrightarrow\)x=1
*với a= 4 \(\Rightarrow\)x\(^2\)+2x -2 =6 \(\Rightarrow\)x\(^2\)+ 2x +4 =0 \(\Rightarrow\)(x+1)\(^2\)+ 3=0 ( vô lý do biểu thức này luôn lớn hơn hoặc bằng 3)
vậy pt có nghiệm là 1
\(\left(x^2+x-2\right)\left(x^2+x-3\right)=12\)
Đặt \(x^2+x-2=a\)
\(\Leftrightarrow a\left(a-1\right)=12\)
\(\Leftrightarrow a^2-a-12=0\)
\(\Leftrightarrow a^2-4a+3a-12=0\)
\(\Leftrightarrow a\left(a-4\right)+3\left(a-4\right)=0\)
\(\Leftrightarrow\left(a-4\right)\left(a+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=4\\a=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x-2=4\\x^2+x-2=-3\end{cases}}\)
Kết hợp tự giải pt rồi kết luận nghiệm x