Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sakura

giải phương trình : \(\frac{\sqrt{x-2018}-1}{x-2018}+\frac{\sqrt{y-2019}-1}{y-2019}+\frac{\sqrt{z-2029}-1}{z-2020}=\frac{3}{4}\)

tìm nghiệm nguyên của pt : \(2x^2+4x=19-3y^2\)

cm với mọi số tự nhiên n thì : \(a_n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương

Nguyễn Việt Lâm
25 tháng 9 2019 lúc 16:31

ĐKXĐ: ...

Đặt \(\left(\sqrt{x-2018};\sqrt{y-2019};\sqrt{z-2020}\right)=\left(a;b;c\right)\) \(\Rightarrow a;b;c>0\)

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{4a-4}{a^2}+\frac{4b-4}{b^2}+\frac{4c-4}{c^2}=3\)

\(\Leftrightarrow1-\frac{4a-a}{a^2}+1-\frac{4b-4}{b^2}+1-\frac{4c-4}{c^2}=0\)

\(\Leftrightarrow\frac{a^2-4a+4}{a^2}+\frac{b^2-4b+4}{b^2}+\frac{c^2-4c+4}{c^2}=0\)

\(\Leftrightarrow\left(\frac{a-2}{a}\right)^2+\left(\frac{b-2}{b}\right)^2+\left(\frac{c-2}{c}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2018}=2\\\sqrt{y-2019}=2\\\sqrt{z-2020}=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2022\\y=2023\\z=2024\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 9 2019 lúc 16:36

\(2x^2+4x+2=21-3y^2\)

\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)

Do \(\left(x+1\right)^2\ge0\Rightarrow7-y^2\ge0\) \(\Rightarrow y^2\le7\) (1)

\(2\left(x+1\right)^2\) là một số tự nhiên chẵn và 3 là số lẻ

\(\Rightarrow7-y^2\) là một số chẵn \(\Rightarrow y^2\) là một số lẻ (2)

Từ (1); (2) \(\Rightarrow y^2\) là số chính phương lẻ và nhỏ hơn 7

\(\Rightarrow y^2=1\Rightarrow y=\pm1\)

\(\Rightarrow2\left(x+1\right)^2=3\left(7-1\right)=18\)

\(\Rightarrow\left(x+1\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 9 2019 lúc 16:38

Ta có:

\(a_n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(a_n=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

\(a_n=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

\(a_n=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(a_n=\left(n^2+3n+1\right)^2\)

\(\Rightarrow a_n\) là số chính phương với mọi n tự nhiên


Các câu hỏi tương tự
Kiều Ngọc Tú Anh
Xem chi tiết
Hồ Ngọc Nga
Xem chi tiết
bach nhac lam
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Như Trần
Xem chi tiết
Lee Thuu Hà
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
nguyễn minh
Xem chi tiết