Bài 7: Ôn tập chương Hàm số lũy thừa, hàm số mũ và hàm số lôgarit

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Giải phương trình :

               \(2\log^2_2x-14\log_4x+3=0\)

Giáo viên Toán
26 tháng 4 2017 lúc 11:12

Điều kiện để phương trình có nghĩa: x > 0.

Biến đổi phương trình như sau:

\(2\log_2^2x-14\log_{2^2}x+3=0\)

\(\Leftrightarrow2\log_2^2x-14.\dfrac{1}{2}\log_2x+3=0\)

\(\Leftrightarrow2\log_2^2x-7\log_2x+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\log_2x=3\\\log_2x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2^3\\x=2^{\dfrac{1}{2}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=\sqrt{2}\end{matrix}\right.\)

(Cả hai nghiệm đều thỏa mãn)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết