a). Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;
\(3y^2-12y+9=0\)
\(\Leftrightarrow y^2-4y+3=0\)
Nhận xét : \(a+b+c=1+\left(-4\right)+3=0\)
\(\Rightarrow y_1=1\) (TM \(y\ge0\))
\(y_2=\dfrac{3}{1}=3\)
Với \(y=y_1=1\Rightarrow x^2=1\Leftrightarrow x_1=1;x_2=-1\)
Với \(y=y_2=3\Rightarrow x^2=3\Leftrightarrow x_3=\sqrt{3};x_4=-\sqrt{3}\)
Vậy \(x_1=1;x_2=-1;x_3=\sqrt{3};x_4=-\sqrt{3}\) là các giá trị cần tìm
b) . Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;
\(2y^2+3y-2=0\)
\(\Delta_y=3^2-4\cdot2\cdot\left(-2\right)=9+16=25\) \(\left(\sqrt{\Delta}=5\right)\)
Vì \(\Delta>0\) nên pt có 2 nghiệm phân biệt
\(\Rightarrow\)\(y_1=\dfrac{-3+5}{2\cdot2}=\dfrac{1}{2}\) (TM \(y\ge0\) )
\(y_2=\dfrac{-3-5}{2\cdot2}=-2\) (KTM \(y\ge0\) )
Với \(y=y_1=\dfrac{1}{2}\Rightarrow x^2=\dfrac{1}{2}\Leftrightarrow x_1=\dfrac{1}{4};x_2=-\dfrac{1}{4}\)
Vậy \(x_1=\dfrac{1}{4};x_2=-\dfrac{1}{4}\) là các giá trị cần tìm
c) Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;
\(y^2+5y+1=0\)
\(\Delta_y=5^2-4\cdot1\cdot1=25-4=21\)
Vì \(\Delta>0\) nên pt có 2 nghiệm phân biệt
\(\Rightarrow y_1=\dfrac{-5+\sqrt{21}}{2\cdot1}=\dfrac{-5+\sqrt{21}}{2}\) (KTM \(y\ge0\))
\(y_2=\dfrac{-5-\sqrt{21}}{2\cdot1}=\dfrac{-5-\sqrt{21}}{2}\) (KTM \(y\ge0\))
Vậy pt đã cho vô nghiệm