\(\tan\alpha=\frac{\sqrt{2}}{5}\approx0,28\)
bn bấm máy tính Shift và nút tan sẽ ra như thế này nek:
\(\tan^{-1}\left(0,28\right)\approx15^o39^,\)
\(\tan\alpha=\frac{\sqrt{2}}{5}\approx0,28\)
bn bấm máy tính Shift và nút tan sẽ ra như thế này nek:
\(\tan^{-1}\left(0,28\right)\approx15^o39^,\)
Cho góc nhọn \(\alpha\)thỏa mãn \(\tan\alpha=\frac{2}{\sqrt{3}}\). Tính: \(B=\frac{\cos^4\alpha+\sin^2\alpha\left(\cos^2\alpha+1\right)}{2\cos^4\alpha+2\sin^2\cos^2-\frac{3}{5}\sin^2\alpha}\)
giúp mình với.Mai phải nộp rồi
Dựng góc nhọn alpha biết
A)sin alpha=0.5
B)cos alpha=0.8
C)tg alpha=3
D)cotg a;ph=2
TÍNH SỐ ĐO CỦA GÓC NHỌN \(\alpha\)BIẾT:
a)\(\tan\alpha+\cot\alpha=2\)
b)\(7\sin^2\alpha+5\cos^2\alpha\)\(=\frac{13}{2}\)
cho góc nhọn \(\alpha\).Biết \(\cos\alpha-\sin\alpha=\frac{1}{5}\)
tính\(\cot\alpha\);\(\tan\alpha\)
Bài 1:
1. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào góc \(\alpha\)( Với \(\alpha\)là góc nhọn)
\(\left(\tan\alpha+\cot\alpha\right)^2-\left(\tan\alpha-\cot\alpha\right)^2\)
2. So sánh \(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2}}}\)và \(\frac{1}{4}\)
(Giúp em câu này nữa thôi ạ)
cho góc nhọn \(\alpha\)Chứng minh:
\(\frac{1-tan\alpha}{1+tan\alpha}=\frac{cos\alpha-sin\alpha}{cos\alpha+sin\alpha}\)
cho góc nhọn \(\alpha\), biết \(\sin\alpha.\tan\alpha=\frac{3}{2}\). tìm giá trị đúng của \(\cos\alpha\)
Ta có: \(\sin^2\alpha+\cos^2\alpha=1\). lại có : \(\sin\alpha=\frac{2}{3}\)
=> \(\frac{4}{9}+\cos^2\alpha=1\)
=> \(\cos^2\alpha=\frac{5}{9}\Rightarrow\cos\alpha=\frac{\sqrt{5}}{3}\)
Mà \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{2}{3}:\frac{\sqrt{5}}{3}=\frac{2}{\sqrt{5}}\)
mặt khác: \(\tan\alpha.\cot\alpha=1\Rightarrow\cot\alpha=\frac{\sqrt{5}}{2}\)
CMR: Với mọi góc nhọn \(\alpha\) ta có :
\(a,\sin^2\alpha+\cos^2\alpha=1\)
\(b,\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
\(c,\tan^2\alpha+1=\frac{1}{\cos^2\alpha}\)