\(y'=3x^2-6x-9=0\Rightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=6\\x=3\Rightarrow y=-26\end{matrix}\right.\)
\(\Rightarrow A\left(-1;6\right);B\left(3;-26\right)\)
Đường thẳng AB thỏa mãn:
\(\dfrac{x+1}{4}=\dfrac{y-6}{-32}\Rightarrow8x+y+2=0\)
\(d\left(O;AB\right)=\dfrac{\left|0+0+2\right|}{\sqrt{8^2+1^2}}=\dfrac{2\sqrt{65}}{65}\)
\(\Rightarrow30a-b=30.2-65=-5\)
Phương trình đường thẳng đi qua 2 điểm cực trị \(A\&B\) hàm số bậc 3 \(y=x^3-3x^2-9x+1\) có dạng là :
\(y=\left(\dfrac{2.\left(-9\right)}{3}-\dfrac{2.\left(-3\right)^2}{9.1}\right)x+1-\dfrac{-3.\left(-9\right)}{9.1}\)
\(\Rightarrow y=-4x-2\)
\(\Rightarrow4x+y+2=0\left(AB\right)\)
\(d\left(O;AB\right)=\dfrac{\left|4.0+0+2\right|}{\sqrt{16+1}}=\dfrac{2\sqrt{17}}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=17\end{matrix}\right.\)
\(\Rightarrow3a-b=3.2-17=-11\)