cho hàm số \(y=x^2-4x+3\) dựa vào đồ thị hàm số trên, hãy cho biết có bao nhiêu giá trị nguyên của m để phương trình
\(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\)có 6 nghiệm phâm biệt
cho hàm số \(y=x^2-2x+3\) có đồ thị (P). lập bảng biến thiên và vẽ đồ thị (P). từ đó tìm các giá trị của tham số m sao cho phương trình \(x^2-2x+3-m=0\) có 2 nghiệm phân biệt
1. tìm m để pt \(\left|-x^2+4x+5\right|-1+m=0\) có 4 nghiệm phân biệt.
2. cho pt \(x^2+2\left(m+3\right)x+m^2-3=0\) , m là tham số. gọi x1,x2 là 2 nghiệm của pt. tìm GTLN của \(P=5\left(x_1+x_2\right)-2x_1x_2\)
Tìm tất cả các giá trị của k để phương trình \(\left|x^2-2\right|x\left|-3\right|=k\) có 6 nghiệm phân biệt
Cho \(x^2-mx+m-2=0\left(1\right)\)với m là tham số .
a, Chứng minh (1) luôn có hai nghiệm phân biệt với mọi giá trị của m.
b, Gọi x1, x2 là các nghiệm của phương trình(1) . Tìm m để biểu thức B=\(2\left(x_1^2+x_2^2\right)-x_1x_2\) đạt giá trị nhỏ nhất.
Tìm tất cả các giá trị thực của tham số m để phương trình \(x^2+\frac{4}{x^2}-4\left(x-\frac{2}{x}\right)+m-1=0\) có đúng 2 nghiệm lớn hơn 1
tìm tất cả các giá trị của m sao cho hai parabol \(y=x^2+mx+\left(m+1\right)^2\) và \(y=-x^2-\left(m+2\right)x-2\left(m+1\right)\) cắt nhau tại 2 điểm có hoành độ lần lượt là \(x_1;x_2\) thỏa mãn \(P=\left|x_1x_2-3\left(x_1+x_2\right)\right|\) đạt giá trị lớn nhất.
cho parabol (P): \(y=\dfrac{1}{2}x^2\) và đường thẳng d:\(y=\left(m+1\right)x-m^2-\dfrac{1}{2}\) (m là tham số)
tìm các giá trị của m thì đường thẳng d cắt parabol (P) tại 2 điểm \(A\left(x_1;y_1\right)\), \(B\left(x_2;y_2\right)\) sao cho biểu thức \(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\) đạt GTNN
tìm m để pt sau có 2 nghiệm phân biệt :\(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\)
rất mong mọi người giúp đỡ