\(y=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2y=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2y-y=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow y=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}<1\)
ta có : 2y=\(\frac{1}{2}+\frac{1}{^{2^2}}+...+\frac{1}{2^{99}}\)
=> 2y-y=\(\frac{1}{2}-\frac{1}{2^{100}}\)
y=0,5=>y<1
2y=1/2+1/2^2+...+1/2^99
2y-y=1/2-1/2^100
y=0,5 =>y<1