CMR:
\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2016^3}< \frac{1}{4}\)
CMR:
\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2016^3}< \frac{1}{4}\)
CMR:
\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2016^3}< \frac{1}{4}\)
CMR:
\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2016^3}< \frac{1}{4}\)
CMR:
\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2016^3}< \frac{1}{4}\)
Cho \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017};B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\).CMR B/A là số nguyên
tinh B=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2016}}{\frac{2016}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2016}}\)
tính
A=\(\left(\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2016}\right)\left(1+\frac{1}{2}+...+\frac{1}{2015}\right)\left(1+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)
tính B
B=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{\frac{2016}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2016}}\)