Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)
\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)
\(\Rightarrow a^4+b^4\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\) (dpcm)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)