Bài 1;Cho S = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+.....................+\frac{1}{2012!}\)CMR: S <2
Bài 2:CMR \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...........+\frac{99}{100!}<\frac{1}{9!}\)
Bài 3: Cho E= \(1+\frac{1}{2}+\frac{1}{3}+...........+\frac{1}{20}\)CMR: E không phải là số tự nhiên
a)\(\frac{1}{10^2}+\frac{1}{11^2}+\frac{1}{12^2}+...+\frac{1}{100^2}<\frac{3}{4}\)
b)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{99}{100}\)
c)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{3}{4}\)
1) Cho \(A=\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}.CMR:A< \frac{1}{9!}\)
2) \(CMR:\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Ai giúp mk sẽ đc thưởng 3 tick , phải ghi chép đầy đủ nha
1 CMR:
B=\(\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+.....+\frac{3n+1}{3^n}< \frac{11}{4}\)(n thuộc N*;n>3)
A=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
C=\(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^{20}-1}{3^{20}}>19\frac{1}{2}\)
1/TINH
\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
\(\frac{2^3}{1.3}.\frac{3^2}{2.4}.\frac{4^2^{^{^{ }}}}{3.5}......\frac{99^2}{98.100}\)
2/CMR
\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}+...+\frac{1}{10000}< \frac{1}{2}\)
Chứng minh rắng
a) \(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+..+\frac{100}{2^{100}}<2\)
b) \(\frac{4}{3}<\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+..+\frac{1}{70}<\frac{5}{2}\)
c) \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}<\frac{3}{4}\)
A=\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+....+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}}\)
B=\(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{500}}\)
\(\frac{1}{11^2}+\frac{1}{12^2}+\frac{1}{13^2}+\frac{1}{14^2}+...+\frac{1}{100^2}< \frac{1}{10}\). Ai làm đúng nhất mình tích cho.
Chứng minh rằng:
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<1\)
b) \(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)