Ta có:
\(A=2^2+2^3+2^4+...+2^{99}\)
\(A=\left(2^2+2^3\right)+\left(2^4+2^5\right)+...+\left(2^{98}+2^{99}\right)\)
\(A=12+2^2.\left(2^2+2^3\right)+...+2^{96}.\left(2^2+2^3\right)\)
\(A=12+2^2.12+...+2^{96}.12\)
\(A=12.\left(1+2^2+...+2^{96}\right)\)
Vì \(12⋮3\) nên \(12.\left(1+2^2+...+2^{96}\right)⋮3\)
Vậy \(A⋮3\)