Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Hoàng Khánh Chi

Chứng tỏ rằng :

\(5^{4^n}+375⋮1000\)

* Vận dụng kiến thức tìm 3 chữ số tận cùng *

Ga
27 tháng 8 2021 lúc 8:47

Ta có :

54n + 375

= (54)n +375

= 725+ 375

= (.....725) + 375

= ......1000 

Vì 54n + 375 có 4 chữ số tận cùng là 1000 mà 1000 \(⋮\)1000

\(\Rightarrow\)54n + 375 \(⋮\)1000

Khách vãng lai đã xóa
Phạm Hoàng Khánh Chi
27 tháng 8 2021 lúc 8:48

TQuynh ơi !!! đề bài là : \(5^{4^n}\) nhé !! Lũy thừa tầng nha !!

Chứ ko pk là 54n

Khách vãng lai đã xóa
Mai Anh Nguyen
27 tháng 8 2021 lúc 9:03

\(5^{4n}+375=\left(5^4\right)^n+375=725^n+375=\left(....725\right)+375=....1000\)

Vì : \(5^{4n}+375\)có 4 chữ số tận cùng bằng 1000 mà 1000 chia hết cho 1000.

Nên \(5^{4n}+375\)chia hết cho 1000 ( đpcm )

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Anh
Xem chi tiết
Phạm Hoàng Khánh Chi
Xem chi tiết
Nguyễn Tất Anh Quân
Xem chi tiết
tran mun
Xem chi tiết
TH
Xem chi tiết
Le Dinh Quan
Xem chi tiết
Y-S Love SSBĐ
Xem chi tiết
Jin Tiyeon
Xem chi tiết
Đinh Lan Hương
Xem chi tiết