Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Trịnh MInh Vi

chứng minh rằng nếu tứ giác ABCD có hai đường chéo với nhau thì tổng bình phương hai cạnh đối này bằng tổng bình phương hai cạnh đối kia

Nguyễn Nam Cao
3 tháng 7 2015 lúc 16:05

Chứng minh rằng nếu tứ giác ABCD có hai đường chéo vuông góc với nhau thì tổng bình phương hai cạnh đối này bằng tổng bình phương hi cạnh đối kia. 
Gọi giao của AC và BD là O , do hai đường chéo vuông góc 
=> các tam giác : OAB, OBC, OCD, ODA là các tam giác vuông tại O 
xét tam giác OAB có AB^2 = OA^2 + OB^2 (1) 
xét tam giác ODC có DC^2 = OD^2 + OC^2 (2) 
xét tam giác OAD có AD^2 = OA^2 + OD^2 (3) 
xét tam giác OBC có BC^2 = OC^2 + OB^2 (4) 
từ (1) và (2)=> AB^2 + CD^2 = OA^2 +OB^2 +OC^2 +OD^2 (5) 
từ (3) và (4)=> BC^2 + AD^2 = OA^2 +OB^2 +OC^2 +OD^2 (6) 
từ (5) và (6) => AB^2 + CD^2 = BC^2 + AD^2 (điều phải c/m ) 

Nguyễn Nam Cao
3 tháng 7 2015 lúc 16:06

Tam giác AID vuông tại I, áp dụng định lí Pytago, ta có A{D^2} = A{I^2} + I{D^2}  (1) 
Tam giác AID vuông tại I, áp dụng định lí Pytago, ta có A{B^2} = A{I^2} + I{B^2}  (2) 
Tam giác AID vuông tại I, áp dụng định lí Pytago, ta có C{D^2} = C{I^2} + I{D^2}  (3) 
Tam giác AID vuông tại I, áp dụng định lí Pytago, ta có B{C^2} = B{I^2} + I{C^2}  (4) 
Vế cộng vế (1) và (4), ta được: A{D^2} + B{C^2} = 2\left( {I{A^2} + I{B^2} + I{C^2} + I{D^2}} \right) (5) 
Vế cộng vế (2) và (3), ta được: A{B^2} + C{D^2} = 2\left( {I{A^2} + I{B^2} + I{C^2} + I{D^2}} \right) (6) 
Từ (5) và (6), ta suy ra A{D^2} + B{C^2} = A{B^2} + C{D^2}  (đpcm) 


Các câu hỏi tương tự
Nhuyễn Tùng Dương
Xem chi tiết
nonk_Kakashi
Xem chi tiết
nonk_Kakashi
Xem chi tiết
nonk_Kakashi
Xem chi tiết
Vũ Đức Minh
Xem chi tiết
Trương Đỗ Anh Quân
Xem chi tiết
Hồ Thu Giang
Xem chi tiết
The Devil
Xem chi tiết
Bạch Ngọc Anh
Xem chi tiết