Đặt 11...1(n chữ số 1)=a
Thì 9a+1=10n
\(\Rightarrow M=...\)
\(=a.\left(9a+1\right)+a+4a+1\)
\(=9a^2+6a+1=\left(3a+1\right)^2\)
Đặt 11...1(n chữ số 1)=a
Thì 9a+1=10n
\(\Rightarrow M=...\)
\(=a.\left(9a+1\right)+a+4a+1\)
\(=9a^2+6a+1=\left(3a+1\right)^2\)
Chứng minh số sau là số chính phương:
A= 111....11 - 222...2 (2n chữ số 1 và n chữ số 2)
B= 111.....1 + 444......44 + 1 (2n chữ số 1 và n chữ số 4)
Cho a = 111...11 (2n chữ số 1); b = 444...44(n chữ số 4). CMR : a+b+1 là một số chính phương
Cho a = 111...11 (2n chữ số 1); b = 444...44(n chữ số 4). CMR : a+b+1 là một số chính phương
1) Chứng minh: x-x2-3<0 với mọi x
2) Cho a=111...1(2n chữ số 1); b=444...4 (n chữ số 4). Chứng minh a+b+1 là 1 số chính phương
Chứng minh rằng số sau đây là số chính phương:
1111....1144......4+1 ( 2n chữ số 1, n chữ số 2)
Chứng minh các số sau là số chính phương:
a) A = 111...111 - 222...222
(2n chữ số 1 và n chữ số 2)
b) B = 22499...99100...009
(n - 2 chữ số 9 và n chữ số 0)
A=11...1 +44...4+1 ( biết 11...1 có 2n chữ số;44...4 có n chữ số)
c/m rằng: A la số chính phương
Chứng minh rằng các số sau là số chính phương:
a)A= 11...155..56 (n số 1; n - 1 số 5)
b)B= 44...4 + 22...2 + 88...8 + 7 (2n số 4; n+1 số 2; n số 8)
Gợi ý: 99...9(n số 9) = 10n - 1
chứng tỏ các số sau chính phương
A=999...900..025(n chứ số 9 và n chữ số 0)
B=444...4888...89(n số 4 vvà n-1 số 8)
C=111...1 - 222...2(2n số 1 và n số 2)
D=111...1+444...4+1(2n số 1 và n số 4)