\(A=\left(2^n-1\right)\left(2^n+1\right)\)
\(=\left(2^n-1\right)\left(2+1\right)\left(2^n-2^{n-1}+2^{n-2}-...-2+1\right)\)
\(=\left(2^n-1\right)3\left(2^n-2^{n-1}+2^{n-2}-...-2+1\right)⋮3\forall n\in N\)
Vậy \(A⋮3\forall n\in N\)
\(A=\left(2^n-1\right)\left(2^n+1\right)\)
\(=\left(2^n-1\right)\left(2+1\right)\left(2^n-2^{n-1}+2^{n-2}-...-2+1\right)\)
\(=\left(2^n-1\right)3\left(2^n-2^{n-1}+2^{n-2}-...-2+1\right)⋮3\forall n\in N\)
Vậy \(A⋮3\forall n\in N\)
Chứng minh rằng với mọi số tự nhiên n thì \(\left(x^n-1\right)\left(x^{n+1}-1\right)\) chia hết cho \(\left(x+1\right)\left(x-1\right)^2\)
chứng minh với mọi số tự nhiên n thì \(\left(x^n-1\right)\left(x^{n+1}-1\right)\)chia hết cho \(\left(x+1\right)\left(x-1\right)^2\)
Cho B=\(\left(n^2+2n+5\right)^3-\left(n+1\right)^2+2012\)
chứng minh B chia hết cho 6 với mọi số tự nhiên n
a/ Chứng minh ới mọi số nguyên \(n\)thì: \(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2\)chia hết cho 5
b/ Chứng minh với mọi số nguyên \(n\)thì: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)\)chia hết cho 2
Chứng minh rằng:
a) \(2017^{2010}\)không chia hết cho 2018
b) \(n^3+6n^2+8n⋮48\)với mọi n là số chẵn
c) (\(\left(n^2+3n+1\right)-1\)chia hết cho 24 với n là số tự nhiên
Chứng minh rằng \(A=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)chia hết cho 3 với mọi n
CMR: \(A=\left(2^n-1\right)\left(2^n+1\right)\) chia hết cho 3 với mọi số tự nhiên n
Chứng minh rằng: \((3^{n+1}-2.2^n)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\) là một số chính phương với mọi số tự nhiên n.
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.