Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Hoàng Quân

Chứng minh rằng: A = 75 . (4^2007 + 4^2006 + … + 4^2 + 4 + 1) + 25 là số chia hết cho 100

Trương Minh Nghĩa
18 tháng 9 2021 lúc 7:17

đặt S=1+4+42+......+41999S=1+4+42+......+41999

⇒4S=4+42+43+....+42000⇒4S=4+42+43+....+42000

⇒4S−S=(4+42+43+....+42000)−(1+4+42+.....+41999)⇒4S−S=(4+42+43+....+42000)−(1+4+42+.....+41999)

⇒3S=42000−1⇒S=42000−13⇒3S=42000−1⇒S=42000−13

Khi đó A=75.S=75.42000−13=75.(42000−1)3=753.(42000−1)=25.(42000−1)=25.42000−25A=75.S=75.42000−13=75.(42000−1)3=753.(42000−1)=25.(42000−1)=25.42000−25

Ta có: 42000-1=(44)500-1=(...6)-1=....5

=>25.42000-25=25.(....5)-25=(...5)-25=....0 chia hết cho 100

Vậy ta có điều phải chứng minh

Khách vãng lai đã xóa
Đặng Hữu Thành Đạt
18 tháng 9 2021 lúc 7:18

Trong các phép chia sau, phép chia nào là phép chia hết, phép chia nào là phép chia có dư?

Viết kết quả phép chia dạng a = b.q+ r, với 0≤≤ r < b.

a) 144: 3;          b) 144: 13;        c) 144: 30.

Phương pháp: Viết kết quả phép chia dạng a = b.q+ r, với 0≤≤ r < b.

Nếu r = 0 thì phép chia hết, nếu 0<  r < b thì phép chia có dư

Lời giải chi tiết

144 = 3.48 + 0

=> Phép chia hết

b) 144 = 13.11 + 1

=> Phép chia có dư

c) 144 = 30.4 + 24

=> Phép chia có dư

Khách vãng lai đã xóa
Lê Minh Vũ
18 tháng 9 2021 lúc 7:23

\(A=75.\left(4^{2004}+4^{2003}+4^2+4+1\right)+25\)

\(A=75.\left(4^{2005}-1\right)\div3+25\)

\(A=25.\left(4^{2005}-1+1\right)\)

\(A=25.4^{2005}⋮100\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
THI MIEU NGUYEN
Xem chi tiết
Hoàng Ngọc Anh
Xem chi tiết
Phạm Trần khánh Thi
Xem chi tiết
letienluc
Xem chi tiết
Nguyễn Thị Ngọc Nhi
Xem chi tiết
Nguyễn Văn Vi Duy Hưng
Xem chi tiết
Pham Khanh Xuan
Xem chi tiết
Trang Đặng
Xem chi tiết
Black pink
Xem chi tiết