\(4n^2\left(n+2\right)+4n\left(n+2\right)=\left(n+2\right)\left(4n^2+4n\right)=4n\left(n+1\right)\left(n+2\right)\)
Đặt \(A=n\left(n+1\right)\left(n+2\right)\) ta có
+ Nếu n chẵn => A chia hết cho 2
+ Nếu n lẻ thì n+1 chia hết cho 2 => A chia hết cho 2
=> A chia hết cho 2 với mọi n
+ Nếu n chia hết cho 3 => A chia hết cho 3
+ Nếu n chia 3 dư 1 thì n+2 chia hết cho 3 => A chia hết cho 3
+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 với mọi n
=> A đồng thời chia hết cho cả 2 và 3 với mọi n => A chia hết cho 6 với mọi n => A có thể biểu diễn thành A=6.k
=> 4A=4.6.k=24.k chia hết cho 24 (dpcm)