CMR 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
\(\Rightarrow\) (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
\(\Rightarrow\) (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
\(\Rightarrow\) 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
\(\RightarrowĐPCM\)
Đặt S = \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{79}+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)\)
Ta có: \(\frac{1}{41}>\frac{1}{60}\)
\(\frac{1}{42}>\frac{1}{60}\)
..............
\(\frac{1}{59}>\frac{1}{60}\)
\(\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{59}+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\)(1)
Lại có: \(\frac{1}{61}>\frac{1}{80}\)
\(\frac{1}{62}>\frac{1}{80}\)
............
\(\frac{1}{79}>\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{79}+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\)(2)
Lấy (1) + (2) ta được:
\(S>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Vậy S > 7/12 (ĐPCM)